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We examine the Galerkin (including single-mode and Lorenz-type) equations for 
convection in a sphere to determine which physical processes are neglected when the 
equations of motion are truncated too severely. We test our conclusions by calculating 
solutions to the equations of motion for different values of the Rayleigh number and 
for different values of the limit of the horizontal spatial resolution. We show how the 
gross features of the flow such as the mean temperature gradient, central temperature, 
boundary-layer thickness, kinetic energy and temperature variance spectra, and 
energy production rates are affected by truncation in the horizontal direction. We find 
that the transitions from steady-state to periodic, and then to aperiodic convection 
depend not only on Rayleigh number but also very strongly on the horizontal resolu- 
tion of the calculation. All of our models are well resolved in the vertical direction, so 
the transitions do not appear to be due to poorly resolved boundary layers. One of the 
effects of truncation is to enhance the high-wavenumber end of the kinetic energy and 
thermalvariance spectra. Our numerical examples indicate that, aa long aa the kinetic 
energy spectrum decreases with wavenumber, a truncation gives a qualitatively 
correct solution. 

1. Introduction 
Recently, there has been much interest in computing solutions to the nonlinear 

equations that govern thermal convection by using a Galerkin method in which the 
velocity and temperature fields are represented by a finite number of modes. In  
applying these truncated models to a convecting fluid in which the Rayleigh number 
is large, such as the convection zone of a star (Marcus 1980a, b; Latour et al. 1976; 
Toomre et al. 1976) we should be somewhat cautious in taking too literally the exact 
pattern of the calculated velocity and temperature fields. However, the gross features 
of the computed flow such as the Nusselt number, kinetic energy spectrum, thermal 
variance spectrum, mean temperature gradient, central temperature, and size of the 
boundary layers may indeed be quite accurate and it is worth-while to determine how 
sensitive these quantities are to the truncation. 

In laboratory flows at more moderate Rayleigh numbers there have been recent 
measurements of the bifurcations as the Rayleigh number is incremed. Gollub & 
Benson (1980) have carefully measured, aa a function of Rayleigh number, the transi- 
tions from steady state to periodic, to one or more states of period doubling, quasi- 
periodicity or phase locking and then finally to non-periodicity. In  trying to explain 
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these bifurcations theorists have performed modal calculations. Unfortunately, the 
number of bifurcations and types of bifurcations produced in the calculations strongly 
depend on how many modes are retained in the truncation. For example, in a fluid 
with Prandtl number of 10, Lorenz (1963) has found there is one inverted bifurcation 
that takes the flow from a steady state to a strange attractor; whereas Curry (1978) 
for the same Prandtl number found that with a more extensive 14-component model 
the flow exhibits a normal bifurcation to periodic motion, followed by a bifurcation 
to period doubling. The flow then bifurcates to an attracting torus and finally changes 
to non-periodic motion. Toomre, Gough & Spiegel (1977), and Marcus (1978) found 
the surprising result that if the vertical structure is finely resolved but only one 
Fourier mode is retained in the horizontal (single-mode theory) then there are no 
bifurcations. The fluid remains in a stable, steady-state regardless of Rayleigh number. 
For a Prandtl number of unity and a 39-mode truncation McLaughlin & Martin (1975) 
found four bifurcations in a fluid that initially was in a steady state with rolls aligned 
along the y axis : the first transition to periodic flow, the second to weakly non-periodic 
motion, the third to a periodic state and the last to non-periodic motion. When they 
reduced the number of modes in their calculation so that there were only three different 
wavelengths in the y direction, they found that there was no final transition to non- 
periodicity. These modal conclusions all support Ruelle & Takens’ (197 1) assertion 
that after at most 4 normal bifurcations the solutions must be non-periodic in time. 
However, it is important to know whether the bifurcations predicted by the modal 
equations are inherent to the full nonlinear equations that govern the convective 
motion or are a general property of the nonlinear, coupled, autonomous equations that 
govern the finite modes of the truncation. If the truncated equations of motion do not 
have sufficient spatial resolution to  model the physically important processes that 
occur in a convecting fluid, then the bifurcations of the truncated equations may 
not be related in any qualitative way to the actual transitions observed in the 
laboratory. 

The purpose of this paper is to examine the solutions to truncated modal equations 
for convection in a sphere and to determine which qualitative features of the solutions 
represent real physical processes in the fluid and which features are due solely to the 
effects of truncation. In  $ 2 of this paper we briefly review the Galerkin multi-mode 
equations (including single-mode and Lorenz) for spherical convection. We attempt to 
describe the physics that each system of equations models, which physical processes 
are neglected by the various truncation schemes, and what artificial constraints each 
model imposes on its solutions. 

For multi-mode calculations that include more than one horizontal wavelength, we 
find that as the Rayleigh numbers increase the solutions pass from a steady state to one 
or more states periodic in time. As the Rayleigh number increases further the solutions 
eventually become aperiodic. For a Rayleigh number of lo5, our truncation with 168 
modes produces a steady state. We find (holding the Rayleigh number and the resolu- 
tion in the radial direction fixed) that, as we decrease the number of horizontal modes 
in the Galerkin expansion, there is a transition from steady-state convection to a 
solution that is periodic in time. As the number of modes is decreased still further, the 
solutions become aperiodic. In  $ 3  we describe these solutions as well as those for a, 
Rayleigh number of 104 where the convection is time independent for all truncations. 
By computing how the energy spectra, convective flux, and temperature gradient 
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change aa a function of the seventy of truncation for both Rayleigh numbers, we not 
only show how the gross features of the flow are affected by the truncation, but also 
provide a possible explanation for the time dependence of our solutions. Our con- 
clusions appear in $ 4 .  

2. Approximations needed for the Lorenz, singlemode and multi-mode 
models 

Convection in a Boussinesq fluid is governed by the Navier-Stokes continuity and 
* thermal-diffusion equations, and the Boussinesq equation of state (see, for example, 

Chandrasekhar 1961). A standard technique used to simplify these coupled, nonlinear 
partial differential equations is the Galerkin method. The thermodynamic quantities 
and velocity are expanded as an infinite sum of coefficients multiplied by orthonormal 
functions and substituted into the governing equations. Then, depending on how many 
of the coefficients are solved and how many are arbitrarily set equal to zero, one arrives 
at a Lorenz, single-mode, or multi-mode model. 

(a)  Review of the multi-mode equations 

Let us consider convection in a self-gravitating sphere of Boussinesq fluid with thermal 
expansion coefficient a, heat capacity C,, kinematic viscosity v, thermal diffisivity k, 
radius d, and a heat source H(r)  in the fluid. Each scalar quantity, such as the tempera- 
ture, is written as a sum of its mean, (T(r , t ) ) ,  and fluctuating, p(r ,  8, #, t ) ,  parts, where 

and 

Re ( F * m )  and Im ( Y'sm) are the real and imaginary parts of the spherical harmonic. 
The velocity is written aa a sum of its poloidal vp and toroidal vT parts which are 
derived from scalar fields w and $; 

Substituting expressions (2.3) and (2.4) into the equations of motion yields the 
equations for the coefficients for the temperature T ,  pressure P ,  gravitational potential 
a, and velocity v (Marcus 19SOa): 



(2.9) 
(2.10) 

= r - z { a ( r z a ( l l > / a r ) / a r + a ~ / a r - a  2 rl(l+ 1 ) ~ ~ , ~ , , w ~ , ~ , ~ ] / ~ } ,  (2.11) 
at Y.Z.m 

where gI is the differential operator defined by its action on the scalar, f, 
%(f = r a w  )/a@ - l(1 + 1 ) f / r I / r ,  (2.12) 

and where 3 ( r )  is the luminosity 

3 ( r )  = 4n (H)r 'Vr ' .  (2.13) 

In  equations (2.5)-(2.11), 3 s  = aGdS9(d)/3k*vC, is the Rayleigh number, u E v / k  
is the Prandtl number and y stands for either Re or Im. 

In  equations (2.6)-(2.13) the unit of time is k/d2,  length is d ,  m w  is pds and tem- 
perature is 9(d)/47rpCpdk. Equations (2.6)-(2.10) may be thought of as the governing 
equations for each eddy or mode (y, 1, m) that makes up the total velocity field. The 
nonlinear terms in equations (2.5)-(2.13) such M {r$.  [v. V) v]}~,~,,, me the eddy-eddy 
interaction terms, with contributions from all other pa j ,  of modes (y',Z',m') and 
(y",Z",m") that obey certain selection rules. The selection rules and the explicit 
expressions for the nonlinear interactions are given in a previous paper (Marcus 1979) 
in terms of Wigner-3j symbols. For a sphere with an impermeable, stress-free boundary 
the velocity is constrained at r = 1 so that 

~ 7 , 1 , r n ( 1 )  = 0, (2.14) 

a 8 ~ 7 . I , m / h a I - 1 =  0, (2.16) 

a($7,1,m/r)/arlr=~ = O* (2.16) 

/: 

We also require that the surface be isothermal: 

T7,1,m(1) = 0. (2.17) 

We are free to choose the mean temperature to be zero at r = 1: 

(T(r= 1)) = 0. (2.18) 

However, the gradient of the mean temperature (and therefore the flux) at r = 1 is free 
to vaq. The central temperature, (T(O)), is also free to vary and is a memure of the 
efficiency of the overall convective flux. The lower the value of (T(O)), the more 
isothermal the fluid is. The central temperature is given by 

We must use the central temperature &B a meltsure of the efficiency convection because 
the Nusselt number is not well defined for our boundary conditions. 
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(b)  Suficient conditions for a good truncation 

The infinite set modal equations (2.5)-(2.13) for the coefficients can only be solved by 
arbitrarily setting some of the coefficients equal to zero (or some other functional 
form) and explicitly solving for the remaining finite set of coefficients. What are the 
consequences of setting some modes equal to zero? The equation for mean value of the 
temperature (2.11),is wellapproximated ifandonlyiftheterm ZZ(l+ ~)O, , ,~ ,~T, , ,  m/r, 
when summed over the finite set of kept modes, is nearly equal to what it would be if it  
were summed over all modes. Now, ZZ( I + 1) wr, T,,, m/r is equal to the convective 
flux and the contribution from each mode is just the convective flux carried 
by that particular eddy. Therefore equation (2.11) is well approximated if we keep 
those eddies that carry most of the flux in the Galerkin expansion. Similarly it can 
be shown that equations (2.5)-(2.8) are well approximated only if we include the 
modes that are responsible for (1) the production of kinetic energy from buoyancy 
forces, (2) the production of the temperature variance, +p8, (3) the viscous dissipation 
of kinetic energy, (4) the dissipation of the temperature variance, and ( 5 )  those modes 
that provide the nonlinear cascade of energy from the production modes to the 
dissipative modes. We expect that the modes most responsible for production of the 
kinetic energy temperature variance and convective flux are the largest spatial modes. 
We also expect that if we wish to include all of the modes that are important in the 
caacade and dissipation of kinetic energy and temperature variance, we will have to 
retain all modes with Reynolds or Pkclet numbers greater than 1. 

(c )  The e$ects of t r u d i m  on the kiinetiC energy 
The rate at which kinetic energy i?(J+v%?r)/at enters the fluids due to buoyancy is 
(Marcus 1 9 8 0 ~ )  

(2.20) 

There are no cross-terms between different modes on the right-hand side of equation 
(2.20) and each term represents the kinetic energy contribution from one mode (y,  1, nz). 
However, combining equation (2.11) with (2.20) shows us that we can write Eln in 
terms of the luminosity and temperature gradient : 

By numerical experimentation we have found that, no matter how few modes are 
kept in the Galerkin expansion, the mean temperature gradient becomes nearly 
isothermal in the sense that 

(2.22) 

Using equation (2.22) and taking the time average (denoted by double angle brackets) 
of equation (2.21), we obtain 

((Ei,)) k: 4naRs _Ep(r)rdr. s,' (2.23) 

We find that even the most severe truncations produce a close approximation to the 
correct value of (( El,)). 
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The time-averaged value of the rate at which kinetic energy is dissipated,((E,,t)), 
must be equal to ((Ein)). Eout is given by 

Eout = -4noI ;  [r-laS(rE)/ar2+ X {-[Z(Z+ 1 ) ] 2 r - 2 ~ y , i , r n ~ 1 ( ~ y , i , r n )  
r .Lm 

(2.24) 

1 
= - X W +  1) I[{w:,I,rnl(Z+ 1) +[a(rwy,i,,)/~r12}/r2+~~,i,,II. (2.25) 

Again, there are no cross-terms between modes on the right-hand side of equation 
(2.24) and each term in the sum represents the dissipation due to one mode. If the high- 
wavenumber modes responsible for the viscous dissipation are not included in the 
Galerkin expansion (or if the modes that are responsible for the cascade of kinetic 
energy to the dissipative modes are not included) ( ( E i n ) )  wil l  not be strongly affected. 
However, to keep ((Eout)) equal to ((Ein)) the fluid must compensate by dissipating 
more kinetic energy in the large-scale modes. From equation (2.24) we see that one way 
in which the rate of dissipation can be increased is by increasing the kinetic energy of 
the modes. We therefore expect the kinetic energy of a severely truncated system to be 
abnormally high. This increase will be evident in the numerical examples in the next 
seotion. 

(d) The effect of truncation on the fluctuating thermal energy 

The rate at which temperature variance is created in the fluid is 

2y.l.m 

(2.27) 

Each term in equation (2.27) corresponds to the thermal input of one mode. Even 
though la(T)/arl will generally be much less than S / r 2 ,  we have found that, for 
fixed Prandtl and Rayleigh numbers, la(T)/&l can vary by an order of magnitude 
depending upon the number of modes kept in the Galerkin expansion. Therefore, 
((&in)) (unlike((Ei,))) is a sensitive function of the truncation. The rate at which the 
temperature variance is dissipated is 

(2.28) 

If the Galerkin truncation does not include the thermally dissipative modes, the 
trunoated solutionwill have toadjust itself so that((&,,t)) is kept equal to((Q,,)).The 
solution can increase the rate of thermal dissipation in the retained modes by increasing 
the thermal variance of the modes. However, unlike ((Itin)), ((&in)) is not constrained 
and the fluid can adjust to its inability to dissipate the thermal variance by decreasing 
((&in)). Since((&i,))isproportional to themean-temperaturegradient (equation (2.27)), 
the fluid can reduce its rate of production of thermal variance by becoming more 
nearly isothermal. In  the next section we show numerical examples in which a 
truncated solution both increases ((Qout)) by increasing its thermal variance and 
decreases ((&in)) by becoming more nearly isothermal. 
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( e )  Single-mode theory 

The severest truncation of a multi-mode expansion is to retain only one horizontal 
mode. This requires that the solution be of the form: 

w, 8,459 t )  = (T( r ,  tD + !h, t )  Me, $1, (2.29) 

w, 8,9,  t )  = (P(r,  t ) )  + &r, t )  h(8, $1, (2.30) 

(2.31) 

II. = 0, (2.32) 

where h(8,#) is an eigenfunction of the horizontal Laplacian, (Ve - l/r(a*/8re) r ) .  
Because the toroidsl modes are not involved in the convective flux, kinetic-energy 
production, or temperature-variance production they are neglected in single-mode 
theory. Our multi-mode numerical experiments have shown that the toroidal velocity is 
much smaller than the poloidal velocity except for large-wavenumber modes in large- 
Rayleigh-number convection (see Marcus 1980b). 

Unlike expansions with more than one horizontal mode, the single-mode solutions 
are always time independent. Toomre et al. (1977), working with a plane-parallel 
geometry, also found that a single mode always leads to a steady-state solution. 
Expansions with a single mode suffer not only from the effects of truncation men- 
tioned in the previous section, but also from other problems. For example, the corre- 
lation between the radial velocity and temperature, 

8 = (!m)/(W (W, (2.33) 

is always identically equal to 1 for a single mode; whereas, experimentally, Deardorff & 
Willis (1907) have found that the correlation in air for Rayleigh-BBnard convection is 
between 0.5 and 0-7 for Rayleigh numbers between 6 x lo6 and 10'. Far from the 
boundary the convective flux, (TK), that is predicted by single-mode theory is in good 
agreement with the flux predicted from multi-mode calculations (see f 3). Because the 
single mode overestimates 6, it always underestimates (p) (c), the product of the 
thermal variance and radial component of the kinetic energy. Another peculiarity 
of the single-mode equations is that the thickness of the boundary layer at the surface 
is controlled by viscosity and decreases as the Rayleigh number is increased (see 
Toomre et at. 1977). In a real fluid we would expect the boundary layer to become 
turbulent and wide as the radially moving fluid smashes into the impermeable outer 
boundary. The thickness of the turbulent boundary layer is not regulated by viscosity, 
but by the rate at which energy can be transferred to other modes. The increase in 
boundary-layer thickness due to the nonlinear cascade in a multi-mode calculation has 
been reported by this author elsewhere (Marcus 1980a). In  a single-mode calculation 
with a large Rayleigh number and an artificially thin boundary layer, most of the 
dissipation of kinetic energy takes place near the surface with 

d r ,  8, t )  = w, t )  4 8 ,  $1, 

(2.34) 

where x is the thickness of the boundary layer. From equation (2.34) we see that 
((I%!,&) is proportional to 1/x. Therefore, a single-mode calculation can compensate 
for its loss of dissipation in the missing high-wavenumber modes by decreasing x. 



248 P. S. Marcus 

(f) Lorenz model 
A further truncation of single-mode expansion gives us the Lorenz model. Using the 
equilibrium conductive temperature gradient with the single-mode equations, we can 
compute the complete set of orthonormal eigenmodes of the velocity and temperature 
(as functions of radius). By expanding the radial dependence of the velocity and 
temperature in terms of these eigenmodes, substituting the expansions into the single- 
mode equations and retaining only a single mode in the radial expansion, we obtain 
the Lorenz equations. These equations were originally derived for a convecting fluid 
in a plane-parallel geometry, but they can easily be extended to a spherical geometry. 
The Lorenz model not only suffers from all of the physical approximations of the 
single-mode theory but also contains some additional limitations. Because the func- 
tional form of the velocity and fluctuating temperature are h e d  and only their 
amplitudes are allowed to vary, the fluid can never develop boundary layers to help 
dissipate the kinetic and thermal energy. More importantly, because the functional 
forms of the velocity and temperature are fixed, the mean-temperature gradient can- 
not become isothermal. 

If we were interested in computing solutions only when the Rayleigh number is 
slightly greater than its critical value, it would be practical to expand the velocity and 
temperature in the eigenmodes that are calculated with the conductive temperature 
gradient. However, these are not a very useful set of functions in which to expand the 
velocity and temperature when the Rayleigh number is large. For example, for any 
large Rayleigh number, we can choose a complete basis in which to expand the velocity 
and temperature by calculating the fundamental and all of the higher harmonic 
solutions to the single-mode equations. By retaining only the fundamental mode in the 
expansion, a modified set of Lorenz-type equations is obtained. We have computed the 
steady-state solutions to the regular spherical Lorenz equation and to the new modified 
Lorenz equations for a Rayleigh number - 30 times greater than the critical value for 
the onset of convection. The solution to the regular Lorenz equation is unstable with 
respect to time-dependent perturbations; both the solution to the modified Lorenz 
equation and the steady-state solution to the multi-mode equations with this Rayleigh 
number are stable. We conclude that qualitative description of the Lorenz model is 
not accurate for large Rayleigh numbers. 

3. Numerical results of multi-mode calculations 
In  this section we present the numerical results of multi-mode calculations for 

CT = 10 and Rayleigh numbers of lo4 and lo5. For each Rayleigh number we repeat 
the calculation several times, each time using a different set of modes to show the 
effects of truncation. For all calculations, the heat source H(r) (see equation (2.13)) is 
constant for r 6 0-3 and zero elsewhere. 

(a) RS = 104 

To compute solutions to the modal equations, we have chosen the set of modes in the 
Galerkin expansion to be all of the spherical harmonics, Y2pm with 1 < leutoif, and all m. 
The radial dependence is finite-differenced with 128 grid points. For leutoft = 3,6,9 
and 12 we find that the solution is time independent. A complete description of the 
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4.* (T(0) )  E h  Qbl 

12 0.680 4.94 x 105 4.08 
9 0.686 4.94 x 1w 4.01 
6 0.675 4.90 x 108 3.93 
3 0.528 4-44 x 1w 1.71 

T A B ~  1 

solution with Zcutoff = 12 appears elsewhere (Marcus 1980a). To compare the overall 
features of the truncated solutions, we have listed the central temperature, Ein  and 
&in as a function of Icutoff in table 1. There is virtually no difference in the cal- 
culated values of (T(O)), El, or &in for Zcutoff = 6, 9, and 12, which indicates that 
modes with I > 6 are not important in production, transport or dissipation of energy. 
Using the value of Ein from table 1, we find that the Kolmogorov length is - 0.212 
which approximately corresponds to a wavenumber I - 4. The solution with Zcutofi = 3 
shows the effects of truncation; the rate of input of thermal energy for lcutoff = 3 
is nearly 60% lower than it is for Zcutoff = 12. The rate E i n  for Zcutoif = 3 is nearly 
equal to Ei, for Zcutoff = 12. The large decrease in &in is consistent with the analysis 
presented in $ 2  which shows that the fluid can compensate for the loss of the 
thermally diffusive modes by decreasing &in. El, is constrained by the fact that it 
must always be approximately equal to 

4 n a R s p 7 ( r ) r d r  = 4-94x 106. 

To compensate for the loss of the high wavenumber modes that dissipate the thermal 
variance when Zcutoff = 3, the fluid decreases by making the temperature gradient 
more nearly isothermal. The isothermal nature of the Zcutoff = 3 solution can be seen by 
noting that the central temperature for 

A more sensitive probe of the effects of truncation is the kinetic and thermal energy 
spectra as functions of the horizontal wavenumber. In  table 2 we have listed 
Q(1, r = 0-5), which is the two-dimensional thermal variance spectrum at r = 0.5, with 
wavenumber I, i.e. 

= 3 is less than it is for Zcutoff = 12. 

Q(kr )  = 2n (Ty,I.m)ara. (3.1) 
7 .  m 

We have also listed the kinetic energy spectra, E(Z,0.5), at r = 0.5, as functions of I and 
Zcutoff in table 3. The kinetic energy spectra show that the value of E(Zcutoff, r = 0.5) is 
higher than it should be. As pointed out in $3, the truncation causes an upward curl 
in the energy spectrum at Zcutoff because the energy that cascades down from the large- 
sca.le modes piles up at Icutofr. The upward curl at the large-wavenumber end of the 
spectrum is even more pronounced in the thermal variance spectra. Because the 
Prandtl number is greater than unity, the dissipation of thermal energy is less efficient 
than the diffusion of kinetic energy. The thermal variance does not dissipate in the 
production modes as does the kinetic energy and is free to cascade down the spectrum 
and pile up at the large wavenumbers. For the severest truncation, Zcutoff = 3, the 
thermal energy spectrum has inverted itself and Q(3,OG) > &(2,0-5) > Q(1,0.5). 
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1 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 

12 

1.37 x lo-' 
7.89 x lo-' 
7-19 x 10-8 
3-95 x 10-8 
1-43 x 10-4 
9.62 x 10-4 
2-81 x 10-4 
1-26 x 10-4 

2-35 x 104 

2.86 x lo-' 
1.26 x lo-& 

2.80 x 10-e 

9 6 

1-30 x lo-' 
7-81 x lo-' 
7.00 x 
4.01 x 10-8 
1-44 x 10-8 
9.66 x 10-4 
2-91 x 10-4  
1.30 x 10-4 
3-01 x lo-' 

1.19 x lo-' 
7.66 x lo-' 
6.86 x lo-' 
3-81 x lo-' 
1.26 x 
1-81 x lo-' 

TABLE 2. Q(1, r=0*6). 

3 

3-06 x 
1-02 x 10-3 
3-66 x lo-' 

1 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 

12 

1181 
636 
213 
32-7 
7.03 
2.92 
0.679 
0.204 
3-75 x lo-' 
1-48 x lo-' 
3.00 x 
1.99 x 10-8 

9 
1182 
634 
21 1 
31.6 
6.89 
2.87 
0.678 
0.206 
3.86 x lo-' 

TABLE 3. E(1, 06). 

6 

1179 
632 
207 
30.8 
8-92 
2.99 
- 
- 

3 

1174 
628 
213 - 

(b)  &?8 = 10' 

For a Rayleigh number of 1 0 6  and a Prandtl number of 10, we have computed solutions 
for Zcatoff = 12,9, 6,4, 3, 2 and 1. With Zcutoff = 1 the solution is steady-state and the 
multi-mode equations reduce to those of single-mode theory. For a comparison 
between single and multi-mode solutions, we have plotted the kinetic energy of the 
I = 1 mode as a function of radius in figure 1 (solid line). Superimposed on this figure is 
the kinetic energy of the I = 1 mode (broken line) computed from the steady-state 
solution of the multi-mode equation with Zcutoff = 12. The functional form of the two 
curves is quite similar, the main difference being that the single-mode kinetic energy 
is consistently higher than the multi-mode solution. This difference in height confirms 
the predictions we made in 5 2: the kinetic energy of the single mode must be enhanced 
to increase ite rate of viscous dissipation. For the single mode, Eout is 4.24~ loB, 
whereas for the Z = 1 component of the multi-mode solution, Bout is only 3-13 x lo6. 
Approximately 32 yo of the kinetic energy produced in the Z = 1 component of the 
multi-mode solution is lost not through dissipation but through the nonlinear energy 
cascade. 
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0 0.2 0.4 0.6 0.8 1 .O 

Radius 

FIGURE 1. The kinetic energy for the Z = 1 mode EM a function of radius calculated with 
= 1 (solid line) and Z,, = 12 (broken line). The higher kinetic energy in the single- 

mode calculation allows more kinetic energy to be viscously dissipated and compensates for the 
inability of the single-mode calculation to lose energy by cascading. Re = los. 

1.4 

1.2 

2 1.0 
X 
h 

-" 0.8 
I1 

84 0.6 
N 

' L .  

0.4 

0.2 

0 0.2 0.4 0.6 0.8 1 .o 
Radius 

FIGURE 2. Same aa Sgure 1 with the temperature variance of 
the Z = 1 mode plotted EM a function of radius. 

In figure 2 we have plotted the temperature variance of the Z = 1 mode of the multi- 
mode solution (broken line) and the single-mode solution (solid line). As in figure 1, 
the two curves have the same function form, but, in general, the single-mode thermal 
variance is greater than the multi-mode variance. The greater thermal variance allows 
the single mode to increase its rate of thermal dissipation. The rates at which the 
temperature variance is dissipated from the Z = 1 components of the single- and multi- 
mode solutions are 0-293 and 0.231 respectively. 

4, the solutions are steady-state and show 
truncation effects similar to those found for Rs = lo4. For Zcutoft = 4, the temperature 
spectrum is inverted with Q(Z+ 1, 0.5) > Q(Z, 0.5). The kinetic energy spectrum is not 
inverted. In  figure 3 we have plotted C = E(2 = 2, r = 0*6)/E(Z = 3, r = 0.3) as a 
function of Zcutoff. C is a measure of the upward curl of the kinetic energy spectrum at 

For all solutions computed with Zeutoff 
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FIQURE 3. C = E ( l =  2, r = 0.5)/E(l  = 3, r = 0.5) as a function of lcdoff. Truncation causes 
the high-wavenumber modes of the kinetic energy spectrum to become anomalously large. By 
extrapolation, it appears that, when lcutofi = 3, C < 1, meaning that the kinetic energy spectrum 
has become inverted. 
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FIGURE 4. The kinetic energy calculated with lmtou = 3 at r = 0-5 for the 1 = 1, 2 and 3 modes 
as a periodic function of time. At t = 0.0603 kinetic energy inverts so that 

E(Z = 1, r 0.5) < E ( I =  3, T = 0.5). 

-, 1 = 1 ; -- -, 1 = 2; -.-, 1 = 3. 

1 = 3. If there were no truncation effects, we would expect C always to be greater 
than 1. If C becomes less than 1,  it means that the kinetic energy spectrum is inverted, 
i.e. E(1 = 3, r = 0.5) > E(1 = 2, r = 0-5) .  Figure 3 shows that C is greater than 1 but 
decreases as lcutotf decreases. By extrapolating the points in figure 3, we may expect 
that C is less than 1 for lcutoff = 3. For lcuto,f = 3 the solution is no longer steady-state 
but is periodic in time. The kinetic energy calculated with l c u t o ~ ~  = 3 at r = 0.5 as a 
function of wavelength, 1, and as a function of time is plotted in figure 4 for one period 
of the fluid's oscillation. 
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We have arbitrarily labelled the left-hand axis of figure 4 as t = 0 but, in fact, it 
takes many iterations for the transients in the fluid to settle down and for the motions 
to become periodic. At t = 0, the kinetic energies of the I = 1, 2 and 3 wavelengths are 
similar in value to the stationary values obtained with lcutoff = 12. As time increases, 
the kinetic energy of 1 = 2 and 1 = 3 modes increases; they are unable to dissipate their 
kinetic energy as fast as it  cascades into (or is produced in) the modes. At t = 0.0467 
the kinetic energy of the 1 = 1 mode becomes less than that of the 1 = 2 mode, and at 
t = 0.0603 the kinetic energy of the 1 = 1 and 1 = 3 modes cross. At this point in time, the 
kinetic energy spectrum changes quickly and re-establishes the 1 = 1 mode the one 
with the largest amount of kinetic energy. By t = 0.152, the solution settles down from 
its rapid oscillations. The period of the energy spectrum is tp = 0.1528; however, the 
period of temperature and velocity is 24,. We have found that p(t + t p )  = - p(t)  and 
v(t+t,) = -v(t+t,). If we assume that the characteristic velocity of the fluid is 
[2E(Z = 1, r = O*5)lt=o]*, then we can estimate the eddy turnover time, t,, to be 
[2E(Z = 1, r = 0-5)1,=,]-* or 0.022. The period of the spectrum, t p ,  is 6.95t,. We have 
repeated the calculation with Zcutotf = 3 and with the viscosity of the 1 = 3 mode (but 
not the 1 = 1 or 2 modes) increased by 10 yo. With the enhanced viscosity the solution 
is steady-state. When we increased the thermal diffusivity of the 1 = 3 mode by 10 yo, 
the solution remained periodic in time. When lcutoff = 2, the solution is aperiodic in 
time. The time-dependent behaviour is somewhat reminiscent of the strange attractor 
solution of the Lorenz model in the following sense. The kinetic energies of the 1 = 1 and 
I = 2 modes vary nearly periodically in time with E(1 = 1) R los and E(1 = 2) z 10. 
The small amplitudes of the nearly periodic oscillation slowly increase until a time when 
the flow quickly changes character and the kinetic energy spectrum becomes inverted 
with E(1 = 1) w lo4 and E(l = 2) x loa. The energies again vary almost periodically, 
with their oscillations growing in amplitude until the flow suddenly changes back to the 
original flow with E(l = 1) w los and E(1 = 2) w 10. We have followed several of these 
changes from the E(l = 1) x lo4 state to the E(l = 1) R 10 state and the flow never 
exactly repeats itself. We have not attempted to determine the fixed points of the 
flow nor have we calculated a Landau expansion to determine whether there might be 
an inverted bifurcation as there is with the Lorenz model. 

4. Discussion 
It is tempting to model the equations of motion by using a Galerkin truncation and 

retaining only the gravest modes to describe convection. It is likely that a truncation is 
justified if the dissipative modes as well as those modes responsible for energy pro- 
duction and transport are included. An easy way, of course, to show that all of the 
physically important wavelengths are resolved is to repeat the calculation with an 
increased number of modes and have the solutions remain unchanged. We have 
predicted and numerically confirmed (for a Rayleigh number of lo4 and a Prandtl 
number of 10) that a truncation with an insufficient number of horizontal modes will 
accurately predict the rate of energy production but will: (1) alter the kinetic and 
thermal spectra by increasing the amplitudes of the high-wavenumber modes; (2) make 
the mean temperature gradient more isothermal and thereby lower the central 
temperature; and (3) decrease the rate at which the temperature variance is produced 
in the fluid. We have further shown that, if the truncation is too severe, the thermal 
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variance spectrum will become inverted, with the high-wavenumber dissipation modes 
having more energy than the low-wavenumber production modes. For Rs = lo4, 
cr = 10 the thermal variance inversion does not destroy the time-independent property 
of the fluid. We have also predicted and numerically confirmed that single-mode 
calculation produces artificially thin boundary layers (where the thickness is deter- 
mined by the actual viscosity and not the eddy viscosity). These thin boundary layers 
are needed to dissipate the kinetic energy that is generated from the buoyancy. If the 
dissipative modes had been included in the calculation, the kinetic energy would have 
been lost primarily through a turbulent cascade and not in a viscous boundary 
layer. 

Modal representation can be used to predict transitions to time dependence in con- 
vective flow if sufficient care is taken so that enough modes are included to resolve all 
of the important length scales. Clever & Busse (1974) computed the bifurcation from 
steady-state rolls to time-dependent wavy rolls and have shown that their truncation 
is valid because the amplitudes of the velocity and temperature fluctuations are small. 
On the contrary, the transitions to aperiodicity reported by Curry (1978) and 
McLaughlin & Martin (1975) occur a t  large amplitudes and the Kolmogorov lengths 
are smaller than the limits of resolutions of their truncations. Their sequences of 
transitions would be more credible if more modes had been included. Even with 168 
modes in spherical convection we find that when the flow changes to aperiodic the 
dissipative lengths are no longer resolvable and we cannot be certain that the transition 
is correct. Gollub & Benson (1980) have measured that the bifurcation to aperiodicity 
in plane-parallel convection with a Prandtl number of 2.5 occurs at  a velocity of 
N 0.04 cm s-1. Since the thermal diffusivity is N 1.5 x 10-3 and the horizontal dimen- 
sions of their cells are - 3 x 1.5 cm, the thermal dissipation length is N 0.1 cm. This 
means that we would require 25 x 12 horizontal modes to resolve the dissipative length 
scales. An optimist might argue that although the model calculations do not include 
the dissipative length scales they may still be qualitatively correct despite the fact that 
the bifurcations are not at the exactly predicted Rayleigh number. The pessimist 
might argue that, if a theorist were provided with an experimentally determined 
sequence of bifurcations, he could probably find a set of nonlinear autonomous 
equations that qualitatively reproduced the sequence and then find a set of modes that 
correspond to his set of nonlinear equations. Our final caution is illustrated by con- 
sidering the single-mode equations, which are a function of time and one spatial 
dimension. Although the single-mode equations do not correspond to any physical 
system they are nonlinear and share many of the properties of actual nonlinear 
equations that govern convection. From our numerical experiments and those of 
Toomre et al. (1977) it appears that the single-mode equations always admit at  least 
one stable, steady-state solution for all Rayleigh numbers. If we examine the transi- 
tion to time dependence of these equations using a Galerkin expansion in the vertical 
co-ordinate we would arrive a t  some erroneous conclusions. With onevertical mode we 
obtain the Lorenz model that predicts a bifurcation to a strange attractor, which is 
incorrect. An important feature of the single-mode solution is the development of 
thin boundary layers which provide a place for the kinetic energy to dissipate and 
whose thickness decreases with Rayleigh number. As the Lorenz model is supplemented 
with an increasing number of Fourier modes there will always be some Rayleigh 
number for which the Galerkin truncation can no longer resolve the boundary layers. 
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We conjecture that any Galerkin truncation of the single-mode equation always 
produces an erroneous bifurcation to time dependence at  the Rayleigh number at  
which the boundary layers become unresolvable. 
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